Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Asian Pacific Journal of Tropical Biomedicine ; (12): 205-211, 2011.
Article in Chinese | WPRIM | ID: wpr-672888

ABSTRACT

Objective: To determine the presence and levels of microbes in unexpired pasteurized milk from randomly selected supermarkets in Kingston, Jamaica. Methods: The quantitative study used a stratified random sampling technique in the selection of the 20 representative milk samples from six (6) supermarkets. Microbiological tests such as methylene blue reduction, standard plate count (SPC), coliform plate count (CPC), purity plate culture, gram staining and biochemical tests were performed to examine the microbes in purchased unexpired pasteurized milk. Results: One sample (BCr016) had a pH of 4.0, a rancid odour and curdled appearance. It decolourized within one hour during the methylene blue reduction test and was classified as class 4 milk. Seven of the samples were sterile with no microbe growth on the plate count agar and violet red bile salt agar (VRBA). The milk samples that appeared to be safe for consumption were all 10, 11, 12 and 13 days before expiration. The VRBA sample BCr016, had a colony count of 13 400 CFU/ mL. There was the presence of Escherichia coli in sample LCr021 which had a standard plate count of 1 580 SPC/mL and a coliform count of 500 CFU/mL. Enterobacter sp. was present in colonies from BCr016 and all the other milk samples. Conclusions: Unacceptable levels of Enterobacter spp. and Escherichiacoli were found in most of the samples. Effective measures to ensure safe milk for human consumption such as the phosphatase test and methylene blue reduction test should be routinely performed on each batch of milk processed by dairy plants.

2.
J Biosci ; 2006 Sep; 31(3): 347-54
Article in English | IMSEAR | ID: sea-111234

ABSTRACT

There is increasing evidence that endogenous nitric oxide (NO) influences adipogenesis, lipolysis and insulin-stimulated glucose uptake. We investigated the effect of NO released from S-nitrosoglutathione (GSNO) and S-nitroso-N-acetylpenicillamine (SNAP) on basal and insulin-stimulated glucose uptake in adipocytes of normoglycaemic and streptozotocin (STZ)-induced diabetic rats. GSNO and SNAP at 0.2,0.5, and 1 mM brought about a concentration-dependent increase in basal and insulin-stimulated 2-deoxyglucose uptake in adipocytes of normoglycaemic and STZ-induced diabetic rats. SNAP at 1.0 mM significantly elevated basal 2-deoxyglucose uptake (115.8+/-10.4% compared with GSNO at the same concentration (116.1+/-9.4%; P less than 0.05) in STZ-induced diabetic rats. Conversely, SNAP at concentrations of 10 mM and 20 mM significantly decreased basal 2-deoxyglucose uptake by 50.0+/-4.5% and 61.5+/-7.2% respectively in adipocytes of STZ-induced diabetic rats (P less than 0.05). GSNO at concentrations of 10 mM and 20 mM also significantly decreased basal 2-deoxyglucose uptake by 50.8+/-6.4% and 55.2+/-7.8% respectively in adipocytes of STZ-induced diabetic rats (P less than 0.05). These observations indicate that NO released from GSNO and SNAP at 1 mM or less stimulates basal and insulin-stimulated glucose uptake,and at concentrations of 10 mM and 20 mM inhibits basal glucose uptake. The additive effect of GSNO or SNAP, and insulin observed in this study could be due to different mechanisms and warrants further investigation.


Subject(s)
Adipocytes/drug effects , Animals , Blood Glucose/analysis , Diabetes Mellitus, Experimental/metabolism , Female , Glucose/metabolism , Insulin/blood , Male , Nitric Oxide Donors/pharmacology , Rats , Rats, Sprague-Dawley , S-Nitroso-N-Acetylpenicillamine/pharmacology , S-Nitrosoglutathione/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL